Hydration water and microstructure in calcium silicate and aluminate hydrates

نویسندگان

  • Emiliano Fratini
  • Francesca Ridi
  • Sow-Hsin Chen
  • Piero Baglioni
چکیده

Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C3S, C2S) and aluminates (C3A, C4AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and nearinfrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm−1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small 3 Author to whom any correspondence should be addressed. www.csgi.unifi.it. 0953-8984/06/362467+17$30.00 © 2006 IOP Publishing Ltd Printed in the UK S2467 S2468 E Fratini et al angle neutron scattering (USANS) and wide angle x-ray scattering (WAXD) that characterize how additives affect both the hydrated microstructure development and the original grain size. In particular, SPs alter the morphology of the hydrated phases, which no longer grow with the classic fibrillar structure on the grain surface, but nucleate in solution as globular structures. All this information converges in a quantitative, and at molecular level, description of the mechanisms involved in the setting process of one of the materials most widely used by human beings. (Some figures in this article are in colour only in the electronic version)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hydration Products of a Refractory Calcium Aluminate Cement at Low Temperatures

Calcium aluminates (CA) are the most important hydraulically setting cements used for preparing refractory castables, because they develop high strength at very early ages after placements.  The anhydrous phases of this kind of cements are CA, CA2 and traces of C12A7 and alpha-alumina. The major hydraulic phase in all of the CA cements including ciment fondu...

متن کامل

Hydration mechanisms of mineral trioxide aggregate.

AIM To report the hydration mechanism of white mineral trioxide aggregate (White MTA, Dentsply, Tulsa Dental Products, Tulsa, OK, USA). METHODOLOGY The chemical constitution of white MTA was studied by viewing the powder in polished sections under the scanning electron microscope (SEM). The hydration of both white MTA and white Portland cement (PC) was studied by characterizing cement hydrate...

متن کامل

Estimation of the Elastic Properties of Important Calcium Silicate Hydrates in Nano Scale - a Molecular Dynamics Approach

Approximately, 50 to 70 percent of hydration products in hydrated cement paste are polymorphisms of C-S-H gel. It is highly influential in the final properties of hardened cement paste. Distinguishing C-S-H nano-structure significantly leads to determine its macro scale ensemble properties. This paper is dealt with nano-scale modeling. To achieve this, the most important C-S-H compounds, with a...

متن کامل

First-principles elasticity of monocarboaluminate hydrates

The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concret...

متن کامل

The Hydration Products of a Refractory Calcium Aluminate Cement at Intermediate Temperatures

The major hydraulic phase in all the calcium aluminate cements including ciment fondue is CA (CaAl2O4). Once hydrated, it starts to form the hexagonal crystals of CAH10 and C2AH8 that depending on the time and temperature of hydration convert to the cubic crystals of C3AH6 and AH3. The nature, sequence, ...

متن کامل

Results of X-ray investigations on hydration products of cementitious materials using special specimen holders and preparation techniques

Hydration products of calcium silicates and calcium aluminates often are difficult to identify by X-ray methods. In this study the hydration products of the aluminate phase especially under the influence of additional chloride ions were studied. Special X-ray measurement conditions must be applied for accurate identification including 1. In situ control of relative humidity 2. Exclusion of CO2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006